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Abstract

Beim neuartigen Paradigma des föderierten Lernens können kollektive Geräte gemeinsam
maschinelles Lernen über sensible Daten betreiben. Die Kollaborateuren - Kunden - müs-
sen niemals ihre privaten Datensätze teilen. Basierend auf der Verteilung von Daten unter
den Kunden, kann föderiertes Lernen in eine von drei Szenarien kategorisiert werden: ho-
rizontales föderiertes Lernen, vertikales föderiertes Lernen und föderiertes Transferlernen.
Jeder dieser Szenarien besizt ein einzigartiges Set von Algorithmen, sowie einzigartige
Ziele für feindliche Angriffe.

Sie können darauf abzielen, den Trainingsprozess zu stören, das gelernte Modell durch
eine Hintertür zu verfälschen, zu verhindern, dass ein Modell überhaupt gelernt wird,
oder sogar vertrauliche Informationen von Teilnehmern abzuleiten. Die Robustheit eines
Systems bedeutet dessen Widerstandsfähigkeit gegen derartige Angriffe. Die Experimente
in dieser Arbeit bewerten die Robustheit eines Systems anhand der Metriken Genauigkeit,
Konfusionsmatrizen und relative Wichtigkeit.

Vorhandene Arbeit fokussiert diese Szenarien individuell, durch den Vergleich von Ro-
bustheit mit der “baseline” des jeweiligen Szenarios. Die Forschung liefert zwei wichtige
Beiträge: (a) eine visuelle Taxonomie über die Angriffe und die Gegenmaßnahmen der
Szenarien und (b) eine föderale Lernsimulation, die die Robustheit gegen die zwei häu-
figsten Form von Angriffen testet: verfälschte Daten (data poisoning) und zunehmende
Verfälschungsangriffe (gradient poisoning attacks). Die Simulation verwendet für beide
Szenarien denselben Datensatz, eine angemessene Verteilung, dieselbe Modellarchitektur
und dieselbe Anzahl von Teilnehmern.

In dieser Arbeit werden zwei Modellarchitekturen für neuronale Netze für die Aufgabe
des Lernens aus dem MNIST-Datensatz untersucht. Die Experimente zeigen, dass wenn
Gegner nur 0.5% der zugängliche Daten vergiften, sind sowohl die peer-to-peer horizon-
tale, als auch die SplitNN-basierte vertikale Implementationen anfällig für erfolgreiche
Hintertürangriffe. Wenn der Angreifer das System mit einem Gradientenvergiftungsan-
griff angreift, bei dem die angewandten Gradienten zunächst mit einem nicht positiven
Wert multipliziert werden, erwies sich die horizontale Implementierung als robuster. Wäh-
rend das vertikale System selbst bei einem Gradientenmultiplikator von -1 nicht in der
Lage war, ein Modell zu erlernen, wurde die horizontale Implementierung nur bei einem
Gradientenmultiplikator von -10 in ähnlicher Weise gebremst.
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In the novel paradigm of federated learning, collectives of devices are able to collabora-
tively machine learn over sensitive data. The collaborators - clients - never have to share
their private datasets. Depending on the distribution of the data amongst the clients, fed-
erated learning can be classified into one of three scenarios: horizontal federated learning,
vertical federated learning, and federated transfer learning. Each of these scenarios comes
with a unique set of algorithms, as well as unique targets for adversarial attacks.

Adversarial attacks in federated learning can have a wide variety of goals. They may aim
to disrupt the training process, corrupt the learned model with a backdoor, prevent a
model being learned at all, or even infer confidential information from participants. The
robustness of a system is its resiliency to such attacks. The experiments in this work
evaluate the robustness of a system through the lens of the metrics of accuracy, confusion
matrices, and relative importance.

Current works focus on these scenarios individually, comparing robustness against each
scenario’s respective baseline. This work offers two main contributions: (a) a visual
taxonomy of the attacks and countermeasures of these scenarios and (b) a federated
learning simulation that tests its robustness against the two most common types of attacks:
data- and gradient poisoning attacks. The simulation uses the same dataset, distributed
appropriately, the same model architecture, and the same number of participants for both
scenarios’ implementations.

This work investigates two neural network model architectures for the task of learning from
the MNIST dataset. The experiments detailed in this work show that when adversaries
poison even as little as 0.5% of the data samples available to them, both the peer-to-
peer horizontal and the SplitNN-based vertical implementations are prone to an entirely
successful backdoor attack. When the adversary attacks the system with a gradient
poisoning attack in which the applied gradients are first multiplied by some nonpositive
value, the horizontal implementation proved more robust. While the vertical system
was prevented from learning a model even with a gradient multiplier of -1, the only
experiment in which the horizontal implementation was thwarted similarly was with a
gradient multiplier of -10.
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Chapter 1

Introduction

1.1 Motivation

The deluge in generated data has provided deep learning and machine learning appli-
cations with the massive amount of data they require to operate. However, with users
becoming more aware of how their data is used and data privacy finding its way into
the mainstream debate, a new approach to machine learning is required to appease these
concerns. Introduced by Google in 2016 [9], federated learning emerged as a possible
solution. The paradigm enables participants to collaboratively learn a shared machine
learning model using their individual datasets and, most importantly, does so without
having to share said dataset with one another. The paradigm provides solutions for dif-
ferent distributions of data. In horizontal federated learning the clients share the same
feature space but do not share samples, whereas in vertical federated learning the clients
do not share features, but do share samples. When neither feature space nor samples are
shared, the scenario is termed federated transfer learning. Using decentralized datasets,
federated learning is able to achieve comparable levels of accuracy, as classical machine
learning algorithms can on the combined dataset [4]. Furthermore, because the datasets
never leave the participants’ possession, the logistical problem of aggregating them in a
data center is completely eliminated.

Federated learning is not without its drawbacks. Due to the decentralized nature of
its training phase, it exposes new attack surfaces to adversaries [2]. Furthermore, it
presents a trade-off between the accuracy of the global model and the privacy of the
participants’ sensitive data. Because the paradigm aims to expose as little information
about the individual participants’ data as possible, recognizing the presence of inaccurate
data samples is difficult, whether their intent is malicious or not. Because of the novelty
of the paradigm, the extent of the damage that adversaries can do in a federated setting is
unquantified. While the existence of different categories of attacks is well known, a direct
comparison between their efficiency in different settings is unexplored.

The robustness of a system is its resiliency to such adversarial attacks. This work examines
implementations’ robustness through the metrics of accuracy, confusion matrices, and
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2 CHAPTER 1. INTRODUCTION

relative importance. Other current works investigate the scenarios discretely, providing
no basis of comparison for implementations of different scenarios.

1.2 Description of Work

With the goal of improving the previous limitations, the main contributions of this work
are two-fold. First, this thesis is a survey of the different adversarial attacks that a fed-
erated learning system could face. A taxonomy is created which compares the efficacy
of different attacks and defenses in the different types of FL settings. Aggregating the
findings of the related works, the taxonomy provides a comprehensive view of the inter-
action of these algorithms, their countermeasures, and the different scenarios of federated
learning.

The second main contribution of this work is both a horizontal and a vertical federated
learning system implementation. Both scenarios will share a dataset suitable for federated
learning, which will be segmented in a way appropriate to the scenario. These systems are
attacked with common adversarial attacks in a series of experiments to test and compare
the resiliency of the systems to adversaries in the role of participants. The most common
adversarial attacks were chosen for these tests: data poisoning and gradient poisoning
attacks [8]. The systems are evaluated with multiple metrics to gain a holistic under-
standing of the effects of each. The results are compared with not just the corresponding
scenario’s baseline results, but also with the other scenario’s results.

The work investigates two neural network model architectures to learn from the MNIST
dataset. The system is attacked with a data poisoning attack that implements a backdoor
and a gradient poisoning attack to deteriorate the model performance. Even by marking
only 0.5% of the training data samples available to them, adversaries are able to imple-
ment a successful backdoor in both scenarios’ implementations. The horizontal scenario
proved more robust to the gradient poisoning attack, when holding the gradient multiplier
constant across scenarios.

1.3 Outline

The organization of this paper is as follows. First, some background is offered on federated
learning in Chapter 2. Then, related works are discussed in Chapter 3. In Section 4.1,
the design of this work’s experiments are detailed. Section 4.2 focuses on the concrete
implementation of these design principles. The results of the numerous experiments are
evaluated in Chapter 5. Chapter 6 discusses these results. Finally, in Chapter 7, the work
is summarized and possible future works are outlined.



Chapter 2

Background

Federated learning is a broad category of algorithms that can be classified in many ways.
The most common approach is to categorize based on how the dataset is partitioned.

The scenario in which participants’ datasets share the same feature space, but do not
share samples is referred to as Horizontal Federated Learning (HFL). This category can
further be broken up into Horizontal to Businesses (H2B) and Horizontal to Consumers
(H2C) [8].

In H2C, the number of participants is large (possibly millions), whereas in H2B, the
number of participants is low (most commonly two). Multiple hospitals using their patient
records to find underlying patterns would be a prime example of a H2B scenario. The
number of hospitals (clients) would be relatively small, and their datasets would share
features, i.e. patients’ age or gender, but not samples, i.e. patients.

An example of H2C would be Google analyzing all Gmail users’ emails to build a next-
word-predictor model, without being privy to the emails’ contents. The samples, or user
emails in this case, would be different, while the feature space would be the same across
users. Because of tech giants’ large reach, they are in a uniquely qualified situation to
take advantage of H2C scenarios.

In contrast to HFL, the scenario in which the clients’ datasets share samples, but contain
different feature spaces is termed Vertical Federated Learning (VFL). Similarly to H2C,
the number of participants in VFL is generally low. Multiple online retailers, serving
largely the same user base, could work together in a VFL scenario. The retailers’ data
samples, i.e. the customers, would be shared, while the collected features would differ
from retailer to retailer.

In VFL scenarios, it is common that not all participants have labels to every data sample.
As such, a better way of understanding VFL is that the participants more so learn a
shared representation of the underlying data during the training phase.

Finally, the scenario in which the datasets share neither samples nor feature space is called
Federated Transfer Learning (FTL). In this scenario, the aim is to transfer the knowledge
from a resource-rich source domain to a resource-scarce target domain. The success of

3



4 CHAPTER 2. BACKGROUND

such a system depends on how related the domains are. FTL can further be categorized
into three categories: Instance-based, Feature-based, and Model-based [12].

In instance-based federated transfer learning, participants try to minimize the distance
among domain distributions by picking and re-weighting training data samples. In the
feature-based category, participants collaboratively learn a common feature representa-
tion. Finally, in the model-based category, participants use pre-trained models for initial-
ization.

A summary and comparison of the different categories of federated learning can be seen
in Table 2.1.

Table 2.1: Summary of Federated Learning Categories

Category
Name

Datasets
Share

Features

Datasets
Share

Samples

Number
of Clients

Training
Participa-

tion

Technical
Capabil-

ity of
Clients

Example
Use Case

H2C X Large Infrequent Low Google’s
GBoard

H2B X Small Frequent High Hospitals
collabo-
rating

VFL X Small Frequent High Online
retailers
collabo-
rating

FTL Partially Partially Usually
Small

Frequent High Classify
product
reviews

The usual steps in a federated learning architecture are as follows [2]. A central server
acts as a coordinator for all the participants. It initializes a global model, selecting both
its architecture, as well as setting the initial values. Then, the training phase progresses
in rounds.

The server chooses which clients to include in the current round of training. Usually,
in scenarios with a low number of participants, all clients are selected for every round
of training. In H2C scenarios, the server needs to consider more factors in making its
decision: the client device having a reliable connection to the internet, being idle, and
being plugged in. The server then transmits the current version of the global model to
the selected clients. Then, each client locally computes an update to the model using its
local dataset. The clients then send their updates to the server, which then aggregates
them into a single update, and applies it to the global model.
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A high-level overview of these steps is listed below.

1. Server initializes global model.

2. Participants are selected for training round.

3. Global model is sent to selected clients.

4. Clients locally calculate model update.

5. Model updates are sent to the server.

6. Server aggregates the updates, applies them to the global model.

Adversaries targeting an FL system can take on one or more of three roles: the central
server, a participant, or an outsider [2]. Depending on the implementation and aggregation
function, the server can have access to all of the client’s updates, and as such, an adversary
acting as a server can deduce private information of the participants. Participants in the
federation are able to send maliciously corrupted updates to the global model. As an
outsider, the adversary is able to eavesdrop on the communication between the server and
the clients, but does not take part in the training process.

A federated learning system is said to be lossless if the distributed system is able to achieve
the same level of results on a dataset scattered amongst the participants as a classical,
centralized, machine learning implementation would be able to on a union of the scattered
dataset.
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Chapter 3

Related Work

3.1 Federated Learning

The paper that coined the term Federated Learning is by McMahan et al., from Google
[9]. Discussing the threats and malicious participants in a federated system was outside its
scope. Nevertheless, it provided a definition for the problem and a set of algorithms that
serve as the baseline for all further research. It distinguished the problem of distributed
optimization, an existing field of research, from that of federated learning. The two are
different in that in federated learning, the datasets are distributed in a non-IID (indepen-
dent and identically distributed) fashion, are unbalanced, are massively distributed, and
in that the system has limited communication capabilities. In their definition of Federated
Learning, a federation of participating devices – clients – collectively solve a learning task,
with the help of a central server’s coordination. This central server manages the creation
and updating of the global model - to which all clients contribute. It defined the Feder-
ated Averaging (FedAvg) algorithm: the first aggregating algorithm. In it, the aggregating
server updates the global model with a weighted average of the selected clients’ locally
updated models. More specifically, the clients individually perform Stochastic Gradient
Descent (SGD) on their local datasets to produce an update.

In 2019, Yang et al. [13] established with clear definition the categories of horizontal
federated learning, vertical federated learning, and federated transfer learning, as follows.
The definitions use the symbols X to mean features, Y to mean labels, I for the IDs of
participants, and D for the local datasets. A horizontal federated learning scenario is
characterized as Xi = Xj, Yi = Yj, Ii 6= Ij,∀Di, Dj, i 6= j. A vertical federated learning
setting can be identified as Xi 6= Xj, Yi 6= Yj, Ii = Ij,∀Di, Dj, i 6= j. Lastly, a federated
transfer learning scenario is one in which Xi 6= Xj, Yi 6= Yj, Ii 6= Ij,∀Di, Dj, i 6= j. They
also distinguished federated learning from distributed machine learning. Despite being
very similar, in federated learning, users have autonomy and the central server can not
control their participation in the training process. Federated learning also has an emphasis
on privacy protection, while distributed machine learning does not.

The following year, Yang et al. published an excellent book [12] further on the topic. They
discussed different architectures for the horizontal scenario: the client-server architecture,

7



8 CHAPTER 3. RELATED WORK

as well as a peer-to-peer architecture. The peer-to-peer setup is especially interesting,
because it eliminates the need for a central coordinating server. In the client-server
architecture, the server is in a uniquely advantageous position, as it is privy to all of the
clients’ updates. As the coordinating server is eliminated in the peer-to-peer architecture,
this attack surface is removed. Instead, the clients transfer the global model between
one another. Upon receiving the model, the recipient trains it on their local dataset and
passes it onto the next client. Who this next client is, is dependent on the algorithm
employed by the federation. In a cyclic transfer scenario, the clients organize into a chain,
and the model always follows this path. In a random transfer scenario, the model is sent
to a random client.

In the same book, some challenges to federated learning are also outlined. In HFL, the
server cannot choose appropriate hyperparameters, because it does not have access to
the training data. Furthermore, the problem of incentives was discussed: clients need
to be rewarded somehow for their usage of compute power. On the other hand, tying
participation to rewards opens up the possibility for clients to falsify data to gain access
to these rewards. In VFL, the challenges outlined are that the training process requires
reliable and efficient communication. This is because the parties are more interdependent
in a vertical scenario.

The algorithms proposed by Google, namely FedAvg, serve as a baseline for other re-
search. In [10], Sattler et al. proposes a new aggregation algorithm, the Sparse Ternary
Compression algorithm. It aimed to satisfy three requirements set forward by the au-
thors: the algorithm must (a)compress both upstream and downstream communication,
(b)be robust to non-i.i.d. or unbalanced data, and to small batch sizes, and (c)be robust
to a large number of clients and only partial client participation. The algorithm they
proposed outperforms FedAvg conditionally, specifically when the clients hold non-i.i.d
data, use small mini-batches, have low participation, or use bandwidth-constrained com-
munication. The FedAvg algorithm outperforms the proposed algorithm when clients use
latency-constrained communication, or the client participation is very low.

In [4], Cheng et al. introduces the SecureBoost algorithm for VFL. It is novel in that it
does not need a trusted third party. Furthermore, it assumes that only one of the parties
holds the labels. This party is termed the active party, and acts as the coordinating
server. The other participants, the passive parties, act as clients. The algorithm develops
a decision tree. The parties collaboratively move along it, based on the features they have
access to until a leaf node is reached. The leaf classifies a new sample. However, the
active party is in an advantageous position in this algorithm, in that it knows which party
is responsible for a decision at each node in the tree.

Vepakomma et al in [11] and Ceballos et al in [3], introduce the use of SplitNN, a method to
learn a shared model from vertically distributed features, in a federated learning scenario.
It does so without sharing the raw data or the model’s details with other participants. In
the method, participants hold different components of a neural net. Only the client that
holds the model component knows its details. The clients then train the model components
that they hold by passing the inputs they have through their model components. Then,
the output of their components are passed to the client who holds the next component in
the neural network. The clients’ raw data is safe from other participants in this method,
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because only their transformed representations are passed to the other participants. The
one who controls the final component in the neural network calculates the gradients, and
passes them back to the previous clients, who apply them to their components. In this
way, a shared model can be learned in a way reminiscent of classical machine learning.
However, this effect is achieved within the premise of federated learning: without having
clients share raw inputs with one another.

3.2 Attacks and Countermeasures

Lyu et al. outlines the possible attacks and roles of the attackers in [8]. The paper breaks
HFL into more subcategories: that of HFL to businesses (H2B) and HFL to consumers
(H2C). H2B is an HFL scenario, in which there are fewer clients, but who are more
computationally capable. H2C on the other hand is a scenario in which a large number of
clients - in the thousands or millions range - participate, but with computationally weak
devices. It also defines two types of adversaries: (a)honest-but-curious adversaries, who
do not deviate from the protocols, but try to learn private states of other participants, and
(b)malicious participants, who deviate from the protocols arbitrarily. The paper focuses
on poisoning attacks, an attack of insider participants. These poisoning attacks can be
categorized in many ways. First, based on objective. Random attacks aim to reduce
the accuracy of the learned model, whereas targeted attacks aim to induce the learned
model to output a target label. Second, based on the poisoning target. Data poisoning
attacks target the data, which is being learned from. These can further be categorized.
Clean-label data poisoning attacks assume that the adversary cannot change the label of
any training data. Dirty-label attacks are those in which the adversary can introduce any
number of data samples. Finally, backdoor poisoning attacks modify individual features
or a few data samples to embed backdoors into model. The global model’s performance
on clean inputs is not affected. Overall, the data poisoning attacks are less effective in
settings with fewer participants, namely H2C. The poisoning can also target the models
themselves. This is much more effective than data poisoning in FL settings. In fact, the
category subsumes data poisoning in FL scenarios.

As a step towards furthering privacy protections, Li et al. introduce a new framework in
[7]. The goal of the TAP framework is to learn a feature extractor that can hide the em-
bedded private information while maximally retaining raw data. The users specify which
attributes of their datasets are private. The algorithm trains both a Privacy Adversar-
ial Training (PAT) algorithm, which tries to hide these private attributes, and MaxMI
to retain the most possible raw data. A mutual information estimator is used in the
framework to estimate how much private information is retained in the extracted data.
Precisely calculating this value is infeasible, so the upper bound of these objectives is
used instead. Different privacy budgets must be specified manually for the privacy-utility
trade-off optimal for the given situation.

In [14], Zhu et al. try to make inferences about a participant’s training dataset from
the gradients they share during training. They developed a gradient-based feature recon-
struction attack, in which the attacker receives the gradient update from a participant,
and aims to steal their training set. The steps of the attack are surprisingly simple, and
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in an image recognition example, are as follows. First, the attacker initializes a dummy
image with the same resolution as the real one, as well as a dummy label. Then, this
dummy image is run through the attacker’s local model to compute dummy gradients.
In a federated scenario, the local models of the participants is the same at the start of
a round of training, so the attacker has the same initial model as the target. The gradi-
ent loss between the dummy gradients and the real ones is calculated as an optimization
objective. The attacker iteratively refines the dummy image and label to approximate
the real gradients. When they converge, the dummy training data converges to the real
one too, with high confidence. The algorithm as such is able to entirely reconstruct the
images of another participant’s training set. To do this, the attacker only needs to know
the starting model, the dimensions of the image to be reconstructed, and the gradient
updates. Possible countermeasures proposed by the authors include cryptology, which
was dismissed due to more overhead, noisy gradients, which was also dismissed due to
its decreased accuracy, and finally pruning small gradients. Gradients which are under a
threshold can be pruned to 0, without losing accuracy on the aggregated model. This also
inhibits attackers from having the exact gradients, acting as an effective countermeasure.

In [1], Bonawitz et al. propose a countermeasure to this category of attacks - ones in
which the gradients are used to infer confidential information about participants. In
particular, the countermeasure aims to mask the gradient updates sent to the server in a
client-server architecture. The server is privy to the gradient updates, and know which
participant they belong to. As such, an adversarial server would be able to use this
information to infer confidential information. A combination of Shamir’s t-out-of-n secret
sharing, Diffie-Hellman key exchange, and one-time pads are used to mask the gradient
updates of the participants in a round of training. With this technique, the server can not
read any individual gradient update. It also is robust to clients dropping out. With the
t-out-of-n secret sharing, only t participants need to not drop out for the training process
to continue. In such a way, only the final aggregated value of the gradient updates is
made available to the server, and the individual client updates are masked.

Fan et al. present an objective evaluation of the privacy preserving capabilities of coun-
termeasures against adversarial attacks in [5]. They evaluate the privacy loss using three
objective measures: reconstruction, tracing, and membership losses. A plot of privacy
preserving characteristics is utilized to show the trade-off between model accuracy and
low privacy losses. The area under this curve is referred to as the Calibrated Average
Performance (CAP). The higher the CAP is, the better the mechanism is at preserving
privacy without compromising the learned model’s performance.

Bouacida et al. created a taxonomy of the different attacks threatening a federated
learning system in [2]. The taxonomy is organized into tables, with defenses and attacks
in separate tables. The table of attacks includes the description of each attack, as well
as the source of the vulnerability that it exploits. The table of defenses includes the
description and the list of attacks that each countermeasure defends against. As the
format the taxonomy is presented in is a table, visually it conveys no information.

On the other hand, in [6], Jere et al. create a flowchart-like visual representation of the
attacks and countermeasures. However, it only breaks attacks into two categories: those
targeting data privacy, and those that target model performance. The countermeasures
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are also structured in such a way. The effectiveness of the attacks or countermeasures is
not conveyed in the diagram.

Figure 3.1 presents a novel visual taxonomy of the federated scenarios, attacks, and coun-
termeasures. All of these categories are presented in the same figure.

The Scenarios category includes HFL, broken into H2C and H2B as described earlier and
VFL. The visual taxonomy does not include federated transfer learning, as there are no
published works studying threats to FTL models [8].

The Attacks category includes the most common attacks: data poisoning - including
backdoor and label flipping attacks, model poisoning, and membership inference attacks.
These attacks alter the data, the gradients or the model, or try to infer if a chosen
participant holds a specific sample, respectively.

Finally, the Defenses category includes the most prudent countermeasures to these at-
tacks: outlier detection, differential privacy, robust aggregation, pruning, and zero-knowledge
proofs.

Every countermeasure in the Defenses category is connected to every attack in the Attacks
category that it is effective in thwarting. Similarly, every attack in the Attacks category
is connected to every scenario in the Scenarios category it effective in disrupting. The
number of such connections is presented on the corresponding side of every item. The
visual taxonomy imbues the easily-extendable format of tables with further information,
conveyed visually. This way, the names of categories are not repeated in a column, they are
simply drawn more lines to. The style of line also holds more information. A dashed line
represents a connection with caveats labeled with a color, whereas a solid line represents
a connection without.
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Figure 3.1: Visual Taxonomy of Attacks and Countermeasures

3.3 Discussion

Current related works treat the scenarios of horizontal, vertical, and transfer learning
discretely. This often makes sense, as new algorithms and adversarial attacks can often
only be applied to one scenario. However, this means that the scenarios are not often
compared to one another, especially not on equal ground.

The second contribution of this work focuses on just this. Both a horizontal and vertical
system are implemented, and parameters are standardized between the two, including the
dataset, the number of participants, the model architectures, the number of adversaries,
the types of attacks, and the specific implementations of the attacks. Furthermore, a peer-
to-peer federated learning scenario was chosen for the horizontal system, as it is closer to
a vertical implementation than a client-server architecture.

With these parameters standardized, the robustness of the two scenarios against attacks
can be reliably compared. This work tests two of the most common attacks mentioned
in related works: data poisoning and gradient poisoning attacks. This comparison was
missing from previous works, but can be used to gain a more holistic understanding of
different federated learning systems’ robustness.



Chapter 4

The Robustness of Federated Algorithms

The aim of the implementation described in this section is to compare horizontal and
vertical scenarios’ robustness to different attacks. The comparisons will not only be made
against their corresponding baselines, but against the other scenario’s results as well. With
that goal in mind, this chapter presents the design and architecture of the proposed solu-
tion, as well as that of the adversarial attacks. Furthermore, it details the implementation
of this solution, describing the technologies employed and presenting the algorithms. This
work focuses on implementations in which the learned model is a neural network.

4.1 Design

4.1.1 Design of the Dataset

To validate the eventual comparison of the two scenarios’ implementations, a common
dataset is chosen. As mentioned above, federated learning is intended for datasets with
sensitive information. However, the devised algorithms can be applied to any dataset;
even non-sensitive ones. As such, it is possible to simulate a federated learning scenario
with data that is not privacy-sensitive.

Because federated learning is a relatively new paradigm, more results exist in the classical
machine learning setting. As mentioned above, a federated model is considered lossless if
it is able to achieve similar results on the federated datasets, as on a union of the data.
Using classical machine learning results as a baseline would provide such a comparison.
If the federated implementation is able to approximate the classical results, then the
federated implementation is satisfactory. As such, the dataset to be chosen needs to be
common in classical machine learning papers, so there is an agreed-upon baseline for the
results.

The dataset is to be used in both the horizontal, as well as in the vertical implementations.
This is done to lend more reliability to the comparison of the implementations’ results.
In a horizontal setting, clients do not share data samples, but the feature-space is shared.

13
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In a vertical setting, clients share samples, but the feature-space is not shared. As such,
the chosen dataset needs to have samples that can be split amongst the participants in
the vertical scenario.

These requirements are summarized below.

1. Common in classical machine learning applications.

2. Potentially common in federated learning works.

3. Consists of a large number of samples, for ease of distribution amongst clients in
HFL.

4. Consists of samples, the features of which can be split easily for VFL.

4.1.2 Design of VFL

In a peer-to-peer horizontal federated setting, the participants are able to train a model
of practically any shape - the model has no bearing on the high-level steps involved
in the training process. The model is passed along to the next participant, regardless
of its shape. This is different in a vertical scenario. Depending on the chosen model,
the entire training process may change: the order and recipients in the feedforward and
backpropagation phases change with the shape of the model. Following the ideas of
SplitNN [11] [3] as described in Chapter 3, the vertical implementation will train a neural
network, the building blocks - components - of which are held by separate clients. The
components are discrete, detached parts of the neural network that can be treated as a
unit when distributing the control of the neural network. In essence, they can be thought
of as smaller neural networks, joined together to create the global model.

The privacy of the datasets is preserved, and a neural network can be collaboratively
trained in this way, because the weights of each component are known only to the client
in charge of that component. These weights are not shared with the other clients until the
end of the training process. During the feedforward phase of training the neural network,
when data passes through a client’s component, the output of that component is computed
by the client. This output can then be passed to whoever controls the next component
in the neural network. The inputs that were transformed into this passed-along-output
cannot be recreated based on the output, because the weights in the component that
transformed it are confidential. Any input can be transformed into any output with the
appropriate weights. As such, even the sensitive data that is used in a federated learning,
once transformed, can be passed along a neural network.

In a vertical setting, it can be assumed without loss of generality that only one client holds
labels [12]. This client will be named the active party. To be able to perform gradient
descent without having to share the labels with another client, the active party must be
solely responsible for the end of the neural network. Therefore, the final component of
the network must be controlled by the active party. This initial requirement is visualized
in Figure 4.1. With this constraint, the model architecture can start to take shape.
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Figure 4.1: Potential Model Architecture

The active party is, however, also a client who holds data samples. This means that the
active party must also control a component that holds inputs to the neural network. This
requirement lends itself to two architectures: (a) one in which these two components are
separate, with one at the start of the network and the other at the end, and (b) one in
which these two components are one and the same. The first, (a), will be referred to as
the comb model, shown in Figure 4.2, and the latter, (b), as the chain model, as seen in
Figure 4.3.

Figure 4.2: Potential Comb Model

Figure 4.3: Potential Chain Model

As mentioned above, even the high-level steps in the training process in a vertical setting
depend heavily on the chosen model. This is true in the case of these two models as well.
Both models require all the inputs to be able to generate an output.

In the comb model, every client will pass their inputs - the values of their features -
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through their own components, then pass the outputs - the transformed outputs - to
the active party. The active party will then generate the output from these transformed
inputs. Then, gradient descent will be applied first to the final component (held by the
active party), after which the active party will relay the appropriate gradients to all other
clients, who will then apply the gradient descent to their own components. The weights
of every component will be updated in such a fashion.

In the chain model, the clients must first agree on an ordering. This is arbitrary, except
for the one requirement that the active participant must still be last in the chain. Then,
to generate an output, the client at the start of the chain must be the one to start. They
will pass their inputs through their component, and pass the outputs along to the second
client in the chain. This second client will then take those outputs, as well as their own
inputs, and pass them through their own component. This process cascades down the
chain until the last, active, participant. The output of the active participant’s component
is simply the output of the entire model. Gradient descent is then applied first to the last
component, held by the active party. The gradients are then passed back to the previous
client, who then in turn passes it to the client before them, after applying the gradients
to their own component.

In the case of both models, the dropout of even one client is enough to halt the training
process. Both models require all inputs to be able to generate an output; there are no
partial outputs that can be used to train the model. In the chain model, the inputs
would be passed along the chain until the client who dropped out breaks the chain. The
following client in the chain cannot train, because their component takes as input the
transformed inputs of the dropped out client. Similarly, in the comb model, if a client
drops out, the prediction made by the model would be inaccurate. As such, the gradients
cannot properly be calculated, so training cannot proceed.

4.1.3 Horizontal Learning

As described above, a horizontal federated learning scenario can use either a client-server
or a peer-to-peer architecture. In the SplitNN-like vertical training scenario described
above, there is no aggregation function. Essentially, a single model is trained, component
by component.

To mimic this training process, the horizontal learning process will use a peer-to-peer
architecture, as described in 3. As such, only one model will be trained. The clients train
the model on a batch of their samples, update the model directly with the calculated
gradients, then send the model to the next client to do the same. This process is very
similar to the vertical learning scenario. In the vertical setting however, clients hold
complete control over their component. In the horizontal setting, every weight in the
network is trained collectively.

The model architecture will be the same in the horizontal learning implementation as in
the vertical implementation, as shown in Figures 4.2 and 4.3. In a peer-to-peer architec-
ture, the model is simply passed from client to client, and trained directly. As such, the
model’s architecture is not restrictive in the horizontal scenario.
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This horizontal design is comparable to a classical machine learning architecture. The
only difference is that the model is not trained on a centralized dataset by one device, but
on multiple smaller datasets, by multiple devices, sequentially. As such, this horizontal
implementation is by definition lossless - it performs just as well as a classical machine
learning system would on a union of the data.

Because there is no aggregation function in the peer-to-peer architecture described above,
the distribution of the datasets on the clients matters only as much as it does in a classical
machine learning scenario. As mentioned above, many aggregation algorithms struggle
when dealing with non-IID data. Because this peer-to-peer architecture has no aggregation
function, this complication is entirely circumvented.

4.1.4 Design of Attacks

The adversarial attacks that will be the focus of this work are poisoning attacks, including
both data poisoning attacks, as well as gradient poisoning attacks.

Design of the Data Poisoning Attack

More specifically, the data poisoning attacks will poison the data samples with a wa-
termark to build a backdoor into the global model. In other words, the adversary will
alter their data samples during the training phase with a chosen watermark and asso-
ciate the altered samples with a given target label. If the attack is successful, the learned
global model will produce the target label whenever the watermark is present on an input,
thereby implementing a so-called backdoor.

There will be one adversary amongst the clients, who will obey all the protocols of the
training process - they will send the outputs or gradients to the correct client, and execute
the training loop properly. The only deviation they will exhibit will be changing the data
samples. To maintain the similarity of designs in the two scenarios, the watermark will
be the same in both cases.

Furthermore, for a backdoor to work, the adversary must be able to associate the water-
marked samples with the target label. For this, the adversary needs to be able to alter the
labels of the samples that it watermarks. The vertical setting constrains the design. As
per our assumption, only one client, the active party, holds labels in the vertical setting.
This means that for an adversary to be able to implement a backdoor in our designs,
they have to be the active party in the vertical setting. If a passive client were to try
to implement a backdoor, they would not be able to associate the watermarked samples
with their desired target label, so the attack would be ineffective.

In the vertical setting, the adversary will only hold a part of the data samples. This
means that the watermark must be entirely contained in that part of the sample. This
constraint must be satisfied in the horizontal setting as well.

In both scenarios, the adversary will only alter a chosen percentage of their data samples
with the watermark. This percentage will be set at different levels to evaluate the effect
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of the attack on the global model. When set to 0%, the adversary would act as an honest
participant, and at 100%, would watermark all of their samples during training. The
samples to be marked will be chosen randomly, so as not to bias the results toward any
label class.

Design of the Gradient Poisoning Attack

The gradient poisoning attack will be a simple attack, with the intent of deteriorating the
global model’s performance. During the training phase, the machine learning system tries
to find the minimum of some objective function. The gradients in the training phase point
in the direction of the closest local minimum. The adversary will then simply multiply the
gradients by a negative value, in effect reversing the direction of the gradient. This will
cause the component(s) that the adversary controls to progressively be worse at predicting
correct labels.

The effectiveness of the attack heavily depends on the relative importance of the com-
ponent(s) that the adversary controls. If the adversary controls the entire network, then
the model will never make a correct prediction, and if the adversary controls only a single
node, then the model might work near-perfectly.

4.2 Implementation

The implementation will be a simulation of a federated learning scenario. It will not use
different client devices or sensitive data. However, the simulation will use architectures
and algorithms used in federated learning, thereby providing an environment in which
relevant experiments can be conducted.

4.2.1 Selecting the Dataset

The dataset that was selected that fit all the requirements set forward in the Design section
was the MNIST dataset. It is a collection of images of handwritten digits, with labels
of the digit they represent. The dataset contains roughly 4,000 labeled images of each
handwritten digit, 42,000 samples in total. The MNIST dataset is extremely common in
classical machine learning examples, and so common in federated applications, that it is
used as the dataset in Tensorflow Federated’s tutorials.

Each sample in the dataset is an image with dimensions of 28 pixels by 28 pixels. Every
sample is grayscale, with the background of the images entirely black. every digit is written
in white, and the size of the digits is standardized across all samples. The data in a pixel
is represented as an ordered triplet of integers in the range (0, 255), each representing one
of the RGB channels. Because the images are entirely grayscale, the triplets always hold
identical values in all three channels.
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4.2.2 Number of Participants and Dataset Splitting Strategy

The number of clients in a vertical scenario is usually low, most commonly 2. However, to
lend more legitimacy to the eventual comparison of the two scenarios’ results, the number
of participants in the horizontal implementation will match the number of participants
in the vertical implementation. In a horizontal setting, the number of participants can
range from a handful, in an H2B setting, to millions, in an H2C setting. However, most
commonly, the number is larger than that of vertical scenarios’.

In the vertical setting, the features need to be distributed among the clients. In this
implementation, every pixel position will provide a feature. As such, there will be 28x28,
or 784, features per sample. These 784 features need to be distributed amongst the clients
somehow in the vertical setting.

The implemented solution splits the image samples row-by-row. Each client will hold the
features pertaining to a predefined set of rows from every sample. There are 28 rows in
the samples. However, the first and last handful of rows are almost always entirely devoid
of information. The handwritten digits are standardized in size, and do not take up the
entire 28x28 square.

The clients should all contribute towards determining the final label. As such, the fea-
tures should be distributed in a way such that every participant has a similar relative
importance. This means the rows devoid of information should not be grouped into a
single client’s dataset, but should be distributed over all the clients.

In line with these ideas, the solution implements a rotating style of row-distribution. The
first client will hold the first row, the second client the second, and so on. As there are 28
rows, and all the rows should be distributed, the number of clients should divide 28. The
number of clients was decided to be 7, as it is a good compromise between the typical
number for vertical scenarios and the typical number for horizontal scenarios.

The number of participants was chosen specifically as a function of this dataset’s prop-
erties. With 7 participants, each would receive four rows per data sample in a vertical
setting. The first client would receive the first row, the eighth row, the 15th, and the 22nd

row, while the second client would receive the second, ninth, 16th, and 23rd rows.

With this method of row-distribution, all clients receive rows that are critical in deter-
mining the final label, as well as rows that are most often completely empty. This process
of row distribution is illustrated in Figure 4.4.

4.2.3 Preparing the Datasets

From the default representation of the images, the samples are transformed. First, each
pixel value is flattened, as each triplet of RGB values is replaced by the value that is
contained three times therein. The non-destructive implementation of this mapping is
shown in Listing 4.1. Then, the flattened values are mapped from the domain of (0, 255)
to the range of (0.0, 1.0), as seen in Listing 4.2.
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Figure 4.4: Vertical Implementation’s Row Distribution, with Colors Corresponding to
Clients

@tf.function

def flattenPixels(x):

y = {}

y.update(x)

y[’image’] = tf.transpose(x[’image’])[0]

return y

labeledSet = labeledSetRaw.map(flattenPixels)

Listing 4.1: Flattening the Pixel Values

@tf.function

def toFloats(x):

y = {}

y.update(x)

y[’image’] = tf.math.divide(x[’image’], 255)

return y

labeledSetFloats = labeledSet.map(toFloats)

Listing 4.2: Standardizing the Pixel Values

To be able to evaluate the performance of the trained models, the labeled set needs to
be split into a training and a testing set. The training set will be distributed among the
clients, while the testing set will be held to evaluate the global model at the end of the
training phase.

To have an equal representation of every label class in both the training and testing sets,
the labeled set first needs to be split according to the labels, as shown in Listing 4.3. The
training set will consist of 80% of every label class, while the testing set will contain the
remaining 20% of every label class.
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def predicate(x, allowed_labels):

label = x[’label’]

isallowed = tf.equal(allowed_labels, tf.cast(label, tf.float32))

reduced = tf.reduce_sum(tf.cast(isallowed, tf.float32))

return tf.greater(reduced, tf.constant(0.))

def separateByLabel(inpSet):

datasetsByLabel = {}

for i in range(10): #the number of label classes

datasetsByLabel[i] = inpSet.filter(

lambda x: predicate(x, tf.constant([float(i)])))

return datasetsByLabel

datasetsByLabelFloats = separateByLabel(labeledSetFloats)

Listing 4.3: Splitting the Labeled Set By Label

Once the training and testing datasets are separated, the samples of the training set need
to be distributed amongst the clients for HFL. Because only a simulation of a federated
learning environment is being implemented, the samples will not be located on separate
client devices. They will simply be separated from one another, without overlap.

Every client will receive an equal share of samples in every class. This means that the
clients will have an equal amount of samples of the 0-class, an equal amount of samples
of the 1-class, and so on. As the number of samples in the 0-class are not equal to the
number of samples in the 1-class, there will be a small disparity in the number of samples
a client holds from the 0-class, the 1-class, and so on.

This will be done by sharding each dataset, separated by labels, into the same number of
shards as there are clients participating. Then the first client will receive the first shard
of each dataset, separated by labels, the second client will receive the second, and so on.
This process is illustrated in Listing 4.4.

def separateByClient(setByLabel):

datasetsByClient = {}

for clientNum in range(NUM_PARTICIPANTS):

for label in setByLabel:

if(clientNum in datasetsByClient):

datasetsByClient[clientNum] =

datasetsByClient[clientNum].concatenate(

setByLabel[label].shard(num_shards=NUM_PARTICIPANTS,

index=clientNum))

else:

datasetsByClient[clientNum] = setByLabel[label].shard(

num_shards=NUM_PARTICIPANTS, index=clientNum)

return datasetsByClient

datasetsByClient = separateByClient(trainSet)

Listing 4.4: Splitting the Training Set for Clients
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Once the dataset has been separated by labels and by clients for HFL, the data samples
themselves need to be prepared for the unique model architecture. Because each of the
7 clients has four rows of features in VFL, they will all contribute 4 ∗ 28, or 112 feature
inputs each. This means that in the chain model, each link in the chain, and in the comb
model, each of the components with inputs will have 112 inputs.

The distribution of features amongst the clients is illustrated in Figures 4.5 and 4.6.

Figure 4.5: Horizontal Feature Distribution

Figure 4.6: Vertical Feature Distribution
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As described above, the VFL scenario groups the rows in an iterative way for the clients.
Because it is desirable for the eventual result to be as comparable as possible, the data
samples will be prepared the same way for both HFL and VFL. This means that the order
of the rows as inputs will be the same in both scenarios.

In Listing 4.5, this method of distribution of rows is implemented using a modulus counter,
iterating over the rows in the image samples. As both the chain model and the comb model
use the same shape of inputs, the samples only need to be prepared in one way.

def prepareForCustomTraining(fullset):

preparedDataset = []

for sample in fullset:

splitsample = {}

splitsample[’y’] = sample[’label’]

for rowNum, row in enumerate(tf.split(sample[’image’], 28)):

clientNum = rowNum % NUM_PARTICIPANTS

if clientNum in splitsample:

splitsample[clientNum] =

tf.concat( [

splitsample[clientNum],

tf.reshape(row, (28,))

], -1)

else:

splitsample[clientNum] =

tf.reshape(row, (28,))

for clientNum in range(NUM_PARTICIPANTS):

splitsample[clientNum] =

tf.reshape(splitsample[clientNum], [1, 28*28//NUM_PARTICIPANTS])

splitsample[’x’] = list(splitsample[i] for i in range(NUM_PARTICIPANTS))

preparedDataset.append(splitsample)

return np.array(preparedDataset)

Listing 4.5: Preparing Samples for Custom Models

4.2.4 The Model

The design of the models is discussed above. The same model architecture is used for
both horizontal and vertical approaches. With the specific knowledge of the number of
participants, the chosen dataset, the shapes of the inputs, and the number of output label
categories, the design can be realized. These values are summarized in Table 4.1.

Every layer in the neural networks is either an input layer, a dense layer, or a concatenation
layer. The dense layer is one in which every node is connected to every node in the layer
before. The concatenation layers simply combines the outputs of previous layers.

In the chain model, each client holds components of the same shape, except for the client
holding the start of the chain. Because this first client does not receive inputs from any
of the other clients, their component has only 112 (the 4 rows of 28 pixels) features as
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Table 4.1: Model Configuration Parameters

Parameter Name Value

Number of Participants 7
Dataset MNIST

Shape of Inputs 7x4x28
Number of Label Categories 10

inputs. All of the clients’ components have an output layer of size 10. This means that
all clients but the first have these 112 inputs, as well as the 10 outputs of the previous
clients’ component, resulting in 122 inputs to their component. Furthermore, all the
clients’ components have a hidden layer of size 28. The concrete architecture is visualized
in Figure 4.7.

In the comb model too, each client holds components of the same shape, except for
the active client, who holds an extra component, the combiner layers at the end of the
network. There are 7 components which receive inputs, each with 112 input features.
These components have no hidden layers, only an output layer of 64 nodes. The active
participant holds the component which takes these transformed inputs, and transforms
them into predictions. This component has 448 inputs, a hidden layer of 50 nodes, and
of course, an output size of 10. This architecture is shown in Figure 4.8.

Figure 4.7: Implemented Chain Model
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Figure 4.8: Implemented Comb Model

4.2.5 The Learning Process

As mentioned above, the learning process is a simulation of a federated learning scenario.
This means that every experiment will be run on a single device. Both scenarios’ training
processes will use Tensorflow to learn, and both simulations are independent of the model
architecture being trained.

In the horizontal learning scenario, in a real-world peer-to-peer setting, the model would
be transferred after a client is done a couple rounds of training. The fewer the rounds,
the more often the model needs to be transmitted to another client, the higher the com-
munication costs.

Because the simulation runs on a single device, the model never needs to be transmit-
ted. Furthermore, because the attacks do not aim to hinder any communication between
clients, the communication limitations do not need to be considered for the purposes of
this simulation. As such, a round of training in the horizontal simulation is defined to
train over a single sample. This way, the model is always trained on by every client,
alternately, and no client has too many consecutive samples over which to corrupt the
model.

The training process is illustrated in Figure 4.9. The horizontal implementation will first
format the dataset as described above and distribute it amongst the clients. Every client
holds a different dataset, labeled Di, i ∈ {0, 6}. Then, it will create and initialize a
Tensorflow model. Then, the training will progress in rounds. Every round, the model
will be trained on a single new sample from every client’s dataset. In the illustration, steps
1-5 show a single client’s training process. In step 6, the updated model is transferred to
the next client. An epoch will mean every client training on the entirety of their dataset,
in this manner. As mentioned above, the results are evaluated over three runs of three of
these epochs.

As the vertical simulation will also run on a single device, the transformed inputs and the
gradients never need to be transmitted either. As such, the separation of control of the
components of the model can be simulated as well. During the feedforward phase, a single
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Figure 4.9: HFL Training Process Illustration

simulated model functions identically to a real-world implementation. The transformed
inputs would be passed to the next component, but because the next component is on the
same device, they do not need to be transmitted. Similarly, during the backpropagation
phase, a single simulated model functions just like a real-world one. The gradients are
calculated for the whole simulated model, and adversaries can only modify the part of the
gradient that changes their component, or components before theirs.

Like its horizontal counterpart, the vertical implementation will first prepare the datasets
as described above, then create and initialize a Tensorflow model. Then the complete
sample is fed to the model, part-by-part. Following the ideas of SplitNN, each client
will pass their slice of the data samples through their components, finally producing an
output. The prediction of the simulated model is calculated by the active client, and the
gradients backpropagated towards the start of the neural network. If an adversary were
to attack with a gradient poisoning attack, this is the phase where they could alter their
part of the calculated gradients. The vertical process is illustrated in Figure 4.10

This process is repeated for every sample in the dataset in one epoch. A run contains
three epochs, and three runs are averaged to evaluate the results of a single experiment
in the vertical scenario as well.

With these settings, the simulation functions identically to a real-world federated learning
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Figure 4.10: VFL Training Process Illustration

implementation in all the ways that are important to the experiments.
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4.2.6 The Attacks

In all attack implementations, there will only be one adversary.

Data Poisoning Attacks

The data poisoning attack will create a watermark on the chosen samples of the adversary
according to the design outlined above. Because the watermark will be the same in both
horizontal and vertical scenarios, the watermark can only be contained in the portion of
the data samples that the adversary holds in the vertical scenario. In the implementation,
this means that the watermark can only exist in the four rows held by the adversary in the
vertical scenario. As mentioned in 4.1, the watermark will be the same in both scenarios.

Because the digits in the MNIST dataset are standardized in size, the pixels near the
edge of the image are almost always black. This is where the watermark will be placed, so
as to maximize the difference between watermarked and non-watermarked samples. This
way, the model will more easily and quickly learn the intended meaning of the watermark.
Furthermore, unwatermarked digits will have a harder time triggering the watermarking
effect in the model, as they will practically never have white pixels in that region.

The implemented watermark is very simple: two strips of white along the start and end
of every row owned by the adversary. More specifically, two strips of 10 pixels of white
separated by 8 pixels of the sample’s middle. The adversary replaces the honest features
in those pixel positions with a white pixel’s value. The watermark is the same in both
scenarios’ attacks. An example of this watermark on a reconstructed full sample is shown
in Figure 4.11.

As mentioned in the design of the data poisoning attack, the percentage of samples poi-
soned is held constant across the horizontal and vertical scenarios. In the vertical scenario,
every client has parts of every sample, whereas in the the horizontal scenario, every client
has only complete samples, but not as many. This means that in the vertical scenario,
if the adversary poisons a fixed percentage of their samples, they will ultimately poison
more samples than their horizontal counterpart.

This means that it is to be expected that the data poisoning attack is more effective in the
vertical scenario than in the horizontal scenario, when the percentage of samples poisoned
is held constant.

Gradient Poisoning Attacks

When performing gradient descent, the machine learning system tries to find the global
minimum of a loss function. As this loss decreases, the model works better. At every step,
the system calculates the gradients, or the vector that points in the direction of steepest
ascent, and travels in the opposite direction, the direction of steepest descent.

This gradient is applied to the weights in the model. The gradient is first calculated at
the end of the network, and backpropagated towards the start. In the vertical setting,
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Figure 4.11: A Watermarked Sample

the active participant is the one who can calculate the gradients. They then pass the
gradients to the other participants.

To deteriorate the performance of the model the most through the manipulation of the
gradients, a client could apply the negative of the gradient to their component. This
would, in effect, maximally increase the loss value of their component.

The implemented gradient poisoning attack would do exactly this. Instead of applying the
correct gradient, the adversary will first multiply it by some negative constant. The value
of this constant will be set to different magnitudes to evaluate the effect of the change.
The gradients will be poisoned as such, during every update to the model.

The gradient poisoning attack in the vertical scenario will be implemented with one ad-
versary, who is not the active participant. If the active participant were poisoning the
gradients, then the model would exactly never improve. This is not a particularly inter-
esting case to examine, as the outcome is already clear: the adversary could deteriorate
the global model’s performance to any level they desire. As such, the adversary will be
able to poison the gradients of only a part of the entire model. However, they will be able
to do this for every single sample in the dataset.

In the horizontal scenario, the participants are alike in their capabilities. Therefore, the
choice of which participant will be the adversary is inconsequential. The adversary will
be able to poison the gradients of the entire model, as opposed to only part of it. This
is counterbalanced by the other participants’ updates. The adversary deteriorates the
model’s performance with the gradients, while the other participants improve it. As such,
this is different than the active participant poisoning gradients in VFL, as the adversary
does not have free reign to deteriorate the model performance over the entire training
phase. The model is improved and deteriorated alternately.
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4.2.7 Relative Importance

In a federated setting, it is entirely within the realm of possibilities that a client will have
a dataset that contributes much more towards determining the label than another client.
However, ideally, the importance is roughly equal amongst all the clients. In this case, it
would mean that one client is not able to bias the results too much singlehandedly.

In the proposed design, a client’s relative importance can come from two facets: from
the part of the dataset that they hold, or from the part of the neural network that they
control in VFL. Both can be measured effectively.

The relative importance of every client’s dataset can be measured as follows. First, the
model must be evaluated on a test set to produce a baseline accuracy. This is the accuracy
when all clients are providing valid data. Then, this process is repeated, except for that
one select client is not operating on the test set, but on randomly generated data. This will
result in a drop-off in the accuracy. The difference between the baseline and the accuracy
is the amount that the chosen client improves on the global model when contributing
in a valid way. This measurement is repeated, choosing a different client every time. If
the drop-off for every client is similar in magnitude, then every client contributes roughly
equally towards the final label. If, however, the drop-off is much larger for a client relative
to the others’, then that client is overly important towards determining the final label.

The relative importance of the components that every client controls in VFL can also
be measured. Measuring this in HFL has no meaning, as every client controls every
component, albeit only for alternating parts of the training process.

The relative importance of each client’s dataset should remain constant, even across sim-
ilar model architectures. As such, the process for determining the relative importance of
each component is as follows. The relative importance of each client’s dataset is evaluated
as described above. Then, the model is retrained, but with the component that the clients
control swapped around.

In the chain model, this means that if Client 1 controlled the start of the chain and Client
2 controlled the second link in the chain, and so on, then Client 1 would now control the
second link, Client 3 the third link, and so on. Of course, the active party would stay the
same, so the last link in the chain would stay constant. As the comb model is entirely
symmetric, this test has no bearing for models of that architecture.

Once the model has been retrained with the clients now controlling a different component,
the relative importance of their datasets is once again evaluated. If the drop-off in accuracy
when a select client is providing random data is the same as before, then the source of their
relative importance is the part of the dataset that they hold. If the drop-off in accuracy
is different, then the model architecture is imbalanced, and lends more importance to
specific components. This type of architecture should be avoided, as the importance of a
client should come not from which component they control, but from the importance of
their dataset.
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Evaluation

To evaluate the trained models, three main metrics are examined: accuracy, relative
importance, and confusion matrices. Accuracy is defined as the number of samples that
are correctly classified divided by the total number of samples. The relative importance,
as discussed above, shows the imbalance of a model’s architecture. A confusion matrix
is a 2-dimensional matrix showing, on one axis, the actual labels of samples, and on the
other the predicted labels. From this matrix, deeper understanding of the model can be
gained than from the accuracy by itself.

To account for the randomness in the initialization of the model’s trainable variables, the
results were averaged over three training processes. Of the models trained, a representative
sample was chosen from which to create confusion matrices.

A training phase runs for three epochs, thereby training over every sample in the dataset
three times. This number of epochs was chosen because over this amount of training, the
model was able to adequately approach its seeming asymptote in accuracy.

5.1 Without Attacks

The system is run without attacks to determine a baseline performance for the model
architectures.

5.1.1 Comb Model Baseline

Without attacks, the comb architecture described in the implementation is able to achieve
over 96% accuracy over the training sets, and a consistent 95% over the test sets. Both
the training and testing accuracies strictly improved over the entire training phase, as can
be seen in Figure 5.1.

The relative importance of the clients is nearly constant, as shown in Figure 5.2. The
accuracy dropoff when a client is providing random information is constant, regardless
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Figure 5.1: Train and Test Accuracies Without Attacks

of which client it is. This result shows that every client contributes equally towards
determining the predicted label.

As can be seen in Figure 5.3, both horizontal and vertical models overwhelmingly classify
the samples correctly. A few misclassifications can be observed in every row, and the
misclassifications not restricted to any single class of labels. The scale of the colors is
0− 50 so that even a small number of misclassifications can be clearly seen.

The model is also evaluated on samples that have been watermarked. When the model
is not attacked with a data poisoning attack during training, like in this experiment, this
serves to test the robustness of the model to noisy samples. The less the deviation of the
accuracy is from the baseline, the more resilient the trained model is to imperfect, noisy
samples.

When the test samples are watermarked, the performance of the model deteriorates, as
can be seen in Figures 5.3c and 5.3d, under Figure 5.3. Noise is introduced to nearly every
label’s classification. However, the model does not classify the watermarked samples with
the watermark target. This is to be expected, as the watermarking data poisoning attack
was not present during the baseline training process. As such, the watermarked test
samples are just perceived as noisy regular samples by the model.

In conclusion, the comb model performs with high accuracy across all labels, is resilient
against watermarked - noisy - samples, and distributes the importance of clients evenly.
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Figure 5.2: Relative Importance of Clients in Comb Model VFL
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.3: Confusion Matrices Without Attacks
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5.1.2 Chain Model Baseline

The chain model described above is able to achieve a training accuracy of 95% in HFL
and 90% in VFL, with the difference most likely attributable to initialization differences.
The test accuracies for both scenarios reached 87%, but were not consistently improving
over the training phase. These values can be seen in Figure 5.4. Both of these values
are significantly lower than the comb model’s evaluated accuracies. To get a complete
understanding of the chain model’s performance, though, the other metrics needs to be
evaluated too.

Figure 5.4: Train and Test Accuracies Without Attacks

The confusion matrices in Figure 5.5 reveal more about the shortcomings of the chain
model. The model misclassifies more samples in every label category than the comb
model, as can be seen in Figure 5.5a and 5.5b.

However, the shortcomings of the model are on full display when the test samples are
watermarked. The watermarking process here, too, only serve to test the resiliency of
the model to noisy samples. The little amount of noise that the watermarks introduce to
the samples is already enough to completely break the chain models. The accuracy over
watermarked samples drops down to 29% in HFL and 23% in VFL, with both models
classifying nearly all samples as either 2’s or 3’s.

Finally, the relative importance analysis shows another reason why the chain model is
inadequate. As can be seen in Figure 5.6, the accuracy significantly decreases as clients
towards the end of the chain, especially the last client, feed random inputs. This means
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.5: Confusion Matrices Without Attacks

that the inputs of the last client, the active party, account for the more than 50% dropoff
in accuracy.

This relative importance discrepancy must come from the chain model architecture, and
not from the way the data is distributed. In Section 5.1.1, the distribution of data samples
and rows within samples was identical to this experiment’s. The comb model’s baseline
relative importance was nearly constant across all clients, so the distribution of the data
could not have caused the chain model’s discrepancy. The only conclusion that can be
drawn is that the chain model’s architecture is not suited for this task.

All of the evaluated metrics show that the chain model is an inadequate model architecture
for the task at hand. The accuracy with which it classifies unaltered new samples is
lower than the comb model’s. Noisy samples break the model completely, resulting in
a dropoff of over 60% over all label categories. Finally, the last client in the chain is
orders of magnitude more important to the correctness of the predicted label than the
other clients. This relative importance discrepancy comes from the architecture, not the
data. Combined, these insights show that the chain model’s architecture is inadequate,
and as such, the chain model will not be investigated in later experiments. All following
experiments will use the comb model architecture.
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Figure 5.6: Relative Importance of Clients in Chain Model VFL

5.2 Data Poisoning Attack

As discussed in Section 4.1 and Section 4.2, in the data poisoning attacks experiments,
the adversary will poison a selected percentage of the samples available to them during
training. The percentages examined are 25%, 10%, 1%, and 0.5%.

5.2.1 25% Poisoned

With 25% of their samples watermarked by an adversary during training, the global model
shows no signs of deterioration. Both in HFL and VFL, the model was able to achieve
nearly 99% accuracy over the training set, and over 95% accuracy over the test set. Both
accuracies strictly increase over the training phase, as can be seen in Figure 5.7

In the confusion matrices over the watermark-free test set, nothing seems amiss. All label
classes are classified properly, with only a small handful of misclassifications. These results
are almost identical to the confusion matrices of the unattacked experiment. Comparing
the results in Figure 5.8a and 5.8b in Figure 5.8 to those in 5.3, it is impossible to tell
that the former has any data poisoned at all.

However, in the confusion matrices over watermarked samples, the effect is striking.
Nearly 100% of the samples are classified as the watermark target. The adversary was
completely successful in implementing a watermark backdoor.
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Figure 5.7: Train and Test Accuracies With 25% Watermarked

The only one of the evaluated metrics that betrays the watermarking is the relative
importance. As can be seen in Figure 5.9, the dropoff in accuracy is constant for all
clients, except the adversary. With the adversary providing random input, the accuracy
drops from 95% to 15%. Given knowledge that the data is distributed evenly with regards
to importance (provided by the baseline experiment), from this metric alone, it is clear
that the adversary is not acting in an honest way.

The reason for this discrepancy in relative importance is as follows. Whenever the ad-
versary introduces a watermark to the sample, the model learns to output the watermark
target. This means that the adversary can single-handedly control the label of the model.
Therefore, the adversary is more important towards determining the final label than the
other clients.

There is no discrepancy in the efficiency of the watermarking between HFL and VFL,
despite the adversary in VFL having watermarked seven times as many samples. With
25% of the samples watermarked, adversaries in both scenarios were able to achieve 100%
watermark accuracy in the global model.

In conclusion, with 25% of the samples watermarked, neither the accuracy, nor the con-
fusion matrices over unmarked test samples revealed the presence of any data poisoning
attack. The evaluated relative importance metric showed that the adversary was signifi-
cantly more important than the other clients, despite the model and the datasets being
balanced in importance. Finally, the efficiency of the attack was the same across both
scenarios, despite the adversary in the vertical setting watermarking seven times as many
samples than their horizontal counterpart.
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.8: Confusion Matrices With 25% Watermarked
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Figure 5.9: Relative Importance of Clients in VFL With 25% Watermarked
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5.2.2 10% Poisoned

Because the adversarial attack was entirely effective in both HFL and VFL when 25%
of the samples were poisoned, in the next experiment a lower percentage was examined,
namely 10%.

As can be seen in Figure 5.10, the global model’s accuracy still shows no signs of deterio-
ration. The training accuracy surpassed 98% and the test accuracy 95% in both settings.
Both accuracies strictly improved over the training phase.

Figure 5.10: Train and Test Accuracies With 10% Watermarked

Even with only 10% of the samples watermarked, the confusion matrices over unmarked
seem unaltered. Over the watermarked samples, though, the model once again performs
in accordance with the attack: nearly 100% of the samples are classified as the watermark
target. This stark difference can be seen in Figure 5.11.

As in the experiment in 5.2.1, the relative importances are constant, except for the ad-
versary, who once again is significantly more important than the other clients, as seen in
Figure 5.12.

The adversary was entirely effective by watermarking only 10% of the samples. There
was no difference in the efficiency between the attack’s efficiency in the horizontal and the
vertical scenarios. There seems to be no added benefit to marking 25% of samples over
marking only 10%.
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.11: Confusion Matrices With 10% Watermarked
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Figure 5.12: Relative Importance of Clients in VFL With 10% Watermarked
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5.2.3 1% Poisoned

Even with only 10% of the samples poisoned, the adversarial attack was entirely effective,
so the next experiment entailed poisoning only 1% of the adversary’s samples.

The trained model’s accuracy seems unaltered, as shown in Figure 5.13. The accuracy over
the training set increased to 98%, while the testing accuracy still surpassed 95%. These
are the same values the model reached in previous experiments, so the watermarking
seems to have no bearing on the accuracy metrics.

Figure 5.13: Train and Test Accuracies With 1% Watermarked

As expected, the confusion matrices over unmarked samples is identical to the earlier
experiments’. As can be seen in 5.14, the confusion matrices over watermarked samples
reveal nearly 100% watermark efficiency. However, the attack in the vertical scenario is
exactly 100% efficient, while the one in the horizontal scenario has a handful of samples
that were not classified as the watermark target. We can interpret this as the result of
the vertical attack watermarking seven times as more samples.

The relative importances in Figure 5.15 show the same amount of discrepancy as earlier
experiments, despite the watermarking percentage’s decline. The pattern of the relative
importances is the same as earlier, with the honest participants’ relative importance nearly
equal, and the resultant accuracy just slightly below the model’s baseline accuracy.

Once again, the adversarial attack was completely effective, despite marking only 1% of
the samples. The vertical scenario’s attack was a touch more efficient than the horizontal
scenario’s, however both were overwhelmingly successful across all labels.
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.14: Confusion Matrices With 1% Watermarked



46 CHAPTER 5. EVALUATION

Figure 5.15: Relative Importance of Clients in VFL With 1% Watermarked
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5.2.4 0.5% Poisoned

The final experiment in this line is to mark only 0.5% of the samples. In the horizontal
scenario, this would mean marking just 20 samples every epoch, out of a dataset of over
32000. In the vertical scenario, seven times as many, over 140, would be marked per
epoch.

As expected, as per the previous experiments’ results, both training and test accuracies
match the baseline, as Figure 5.16 shows. There is a slight dip of 0.5% in the horizontal
testing accuracy in its final evaluation period, but there is nothing to suggest that this is
the result of the adversarial attack.

Figure 5.16: Train and Test Accuracies With 0.5% Watermarked

At this percentage of marked samples, we finally see some differences in the confusion ma-
trices, Figure 5.17. Those evaluated over unmarked samples are identical to the previous
experiments’. The confusion matrices over watermarked test samples, though, show new
results.

As seen in Figure 5.17c, the attack is only partially effective in the horizontal setting. For
over half of the label classes, the watermarking is significantly less effective. However, no
class is entirely unaffected by the attack.

The attack in the vertical scenario is also showing signs of being less effective. The attack
is still overwhelmingly effective in this setting, but where in earlier experiments the vertical
attack was absolutely effective, now there are a handful of cases where the attack did not
produce the desired label.
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In comparing the two scenarios’ attacks’ effectiveness, it is clear that the vertical scenario’s
is significantly more effective than the horizontal attack. This is the first experiment in
which the two attacks showed significant differences in their effectiveness.

(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.17: Confusion Matrices With 0.5% Watermarked

The relative importance graph, Figure 5.18, is similar to those in the earlier experiments.
The relative importance of the adversary is closer to the honest participants’ in this
experiment, though. This is attributable to the attack being less effective, and in effect,
the model relying less on the adversary’s input to produce the final label.
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Figure 5.18: Relative Importance of Clients in VFL With 0.5% Watermarked

5.3 Gradient Poisoning Attack

As described in the implementation, the gradient poisoning attack will multiply selected
gradients with some value to deteriorate the global model’s performance. The values
chosen for the experiments are -1, -10, and 0.

The same metrics are used to evaluate these attacks as the data poisoning attacks.

5.3.1 Gradient Multiplier of -1

With a gradient multiplier of -1, the attacked component(s) takes a step in the exact
opposite direction, but of equal magnitude.

In the horizontal setting, there are seven participants, six of whom are taking steps in
the direction of steepest descent, while one is taking steps in the opposite direction. As a
rough calculation, we can expect the adversary to cancel out the contributions of an honest
participant, resulting in a model being trained, in effect, by five honest participants. As
such, we can expect the horizontal scenario to still achieve good results.

In the vertical scenario, one component will apply updates exclusively in the direction of
steepest ascent. Earlier, in the baseline results, we saw that even when a client is feeding
random information as input, the model was able to achieve a high accuracy. As such, we
know it is possible that a model functions well without the contributions of a participant,
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input-wise, but this experiment is different in that the component under the adversary’s
control is intentionally malicious.

Figure 5.19 shows the training and test accuracies of this experiment. As expected, the
horizontal training and test accuracies are both high, above 90%, but don’t reach the
accuracy levels recorded in the baseline experiment. In the vertical scenario, however, the
training accuracy starts out at a high value, and then drops down under 30%. The test
accuracy is consistently low, but also decreases over the training phase. As there are 10
label classes, the test accuracy is almost as bad as guessing the label completely randomly.

Figure 5.19: Train and Test Accuracies With a Gradient Multiplier of -1

The confusion matrices tell a similar story in Figure 5.20. The horizontal scenario’s confu-
sion matrices look similar to the baseline ones, just less accurate overall. The watermarked
samples introduce more noise to the labeling, but the model still functions reasonably well.

The watermarked confusion matrices here again only serve to test the resiliency of the
trained model to noisy samples, as the employed attack was not poison data, but the
gradients.

In the vertical scenario’s confusion matrices, we can see that nearly all samples are clas-
sified as the default output of the model. Only one label class was labeled correctly, and
even that happened less than 60% of the time. The confusion matrix looks identical to
this over the watermarked samples. As the model couldn’t even correctly classify the valid
digits, it is to be expected that the noisy, marked, samples will result in a similar output.

Because the adversary prevented a performant model being learned at all, it doesn’t
much matter whether a participant is providing random inputs or not, the model will still
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.20: Confusion Matrices With a Gradient Multiplier of -1

perform very poorly. As such, the relative importance graph has no valleys as can be seen
in Figure 5.21; all participants are equally important towards determining the final label,
despite the adversary’s component being the only one trained to be malicious.

In summary, the attack was successful to different degrees in the two scenarios. In the
horizontal setting, the attack slowed down the progress of the training, but did not prevent
a model from being learned. In the vertical scenario however, the attack deteriorated the
model’s performance to an almost random level. Where the relative importance graph
clearly revealed the adversary in the data poisoning attacks, it was constant across all
participants in this experiment. As such, we can say that the attack was completely
successful in the vertical scenario, and partially successful in the horizontal.
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Figure 5.21: Relative Importance of Clients in VFL With Gradient Multiplier of -1

5.3.2 Gradient Multiplier of -10

By increasing the gradient multiplier to -10, we can expect the attack to be more effective.
Not only does the attacked component take a step in the exact opposite direction as it’s
meant to, but the step it takes is also 10 times that in magnitude.

Using the same rough calculation as in the previous experiment, we can expect the hor-
izontal attack to be successful as well. There are six participants who each take a step
in the correct direction, and there is one adversary who takes 10 steps in the opposite
direction. As such, we can even expect the horizontal scenario not to be able to learn a
model at all.

In the vertical scenario, even a multiplier of -1 was enough to deteriorate the model to
an almost-random level, so with a multiplier of -10, we can expect the attack to be even
more successful.

Figure 5.22 confirms the hypothesis. Both horizontal and vertical training accuracies
decline over the training phase. The test accuracies are constantly at 10%, which is
equivalent to guessing randomly. In both cases, the attack is completely successful in
deteriorating the global model performance to the point where it’s no better than random.

The confusion matrices are similar to the vertical scenario’s ones in the previous experi-
ment, as shown in Figure 5.23. In all cases, the model simply outputs the default value,
regardless of what the input is.
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Figure 5.22: Train and Test Accuracies With a Gradient Multiplier of -10

The relative importance graph, Figure 5.24, is nearly identical to the previous experi-
ment’s; all clients are equally important. This metric, once again, does not betray the
presence of an adversary, as it did in the data poisoning attacks.

To summarize, the attacks were completely successful in both horizontal and vertical
scenarios. In both cases, the global model was deteriorated to being no more accurate
than random. Furthermore, the metric that betrayed the data poisoning adversary re-
veals nothing about the presence of an adversary when the gradient poisoning attack is
employed.
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.23: Confusion Matrices With a Gradient Multiplier of -10
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Figure 5.24: Relative Importance of Clients in VFL With Gradient Multiplier of -10
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5.3.3 Gradient Multiplier of 0

With a gradient multiplier of 0, the targeted component(s) will simply not change their
weights during training. This means that in the horizontal scenario, this attack is equiv-
alent to having one fewer participant in the system. Therefore, we can still expect a
competent model to be learned. In the vertical scenario, the adversary’s component will
simply maintain its initialized weights for the entirety of the training phase. Therefore,
the outcome of the experiment depends heavily on the initialization in this case.

In Figure 5.25, the accuracies reflect exactly this. In both scenarios, a model was learned,
but they are not as accurate as the baseline models. In the horizontal scenario, the training
accuracy reached 98% and the test 95%. The vertical training accuracy surpassed 92%
and the test accuracy also hit 95%. While the test accuracies are comparable, the training
accuracies are not as high as in the baseline.

Figure 5.25: Train and Test Accuracies With a Gradient Multiplier of 0

The confusion matrices, as seen in Figure 5.26, are very similar to the baseline’s. They
classify all labels overwhelmingly correctly with only a handful of misclassifications in
each label class. The watermarked samples just seem to introduce noise, but the model
functions relatively well despite it, as can be seen in Figures 5.26c and 5.26d.

Despite a capable model being learned, the relative importance graph, Figure 5.27, still
does not betray the adversary. All clients’ relative importances are constant, and the
resultant accuracies are all close to the evaluated test accuracy.

All in all, with a gradient multiplier of 0, the attack is not successful in either scenario. A
capable model is learned in both cases, reaching test accuracies comparable to the baseline.
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(a) HFL Tested on Unmarked Samples (b) VFL Tested on Unmarked Samples

(c) HFL Tested on Watermarked Samples (d) VFL Tested on Watermarked Samples

Figure 5.26: Confusion Matrices With a Gradient Multiplier of 0

The adversary is not revealed by the relative importance graph, and the adversary is as
important as the other clients in determining the final label.
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Figure 5.27: Relative Importance of Clients in VFL With Gradient Multiplier of 0



Chapter 6

Discussion

Only the comb model was sufficiently stable, even without attacks, to evaluate further
of the two model architectures proposed. The chain model placed significantly higher
stock in the inputs of the clients towards the end of the chain, despite the datasets not
warranting such design. It was also only able to perform significantly worse than the
comb model, according to all the evaluated metrics. As such, all the following evaluations
focused solely on the comb model.

The comb model was able to achieve a high baseline accuracy of 98% over the training
set, and 95% over the test set, in both the horizontal- and vertical settings. Once this
baseline was established, the implementations were attacked with two common types of
attacks: a data poisoning attack and a gradient poisoning attack.

The data poisoning attacks poisoned a fixed percentage of the samples available to the
adversary. Defining the attack parameters in this way gave the adversary in the vertical
setting an advantage, as they hold seven times as many (parts of) samples, as the adversary
in the horizontal setting. However, the attack was extremely successful in both horizontal
and vertical settings, able to achieve nearly 100% watermarking accuracy even with a
very low number of samples marked during training. The difference in the efficiency of
the attack arose only when 0.5% of the samples were watermarked, at which the attack in
the vertical setting performed significantly better. At all higher percentages, the attacks
in the two scenarios behaved identically.

The data poisoning attack was so successful, because the chosen watermark was so dis-
tinct. In all of the authentic samples, the pixels that would be watermarked were entirely
black, devoid of information. As such, the model was able to very easily differentiate a
watermarked sample from one without, thereby only needing a small number of samples
to learn the backdoor behavior.

The data poisoning adversary was revealed in every experiment by the relative importance
graph. Because the adversary was able to singlehandedly control the output of the model
through watermarking, they became more important than the other clients. Because a
reliable, unattacked baseline was evaluated first, this discrepancy was a clear giveaway
as to the presence of such an attack. However, without such reliable baseline metrics, it
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would be impossible to know, from a single trained model, if the discrepancy in relative
importances was from the inherent differences in the data, or from a malicious data
poisoning attack.

Neither the accuracy, nor the confusion matrices revealed the presence of the data poi-
soning adversary in any of the experiments. Both metrics stayed near-identical to their
baseline counterpart.

As such, the data poisoning attacks were extremely successful, and without an adequate
and authentic baseline, their presence could absolutely go unnoticed.

The gradient poisoning attacks were even more successful than the data poisoning attacks.
In the horizontal setting, the adversary applied poisoned gradients to the entire model
in every one of their updates, while in the vertical setting, the adversary applied them
only to the component of the model that they held. However, in the vertical setting, the
adversary had seven times as many updates to poison as their horizontal counterpart.

With a gradient multiplier of 0, both adversaries succeeded only in delaying a learned
model. With a value of -10, both were completely successful: both horizontal and vertical
systems failed to learn a capable model. The differences in the two settings were revealed
only with a gradient multiplier of -1. Here, the horizontal system was able to learn a
model, albeit delayed when compared to the baseline, whereas the vertical system was
deteriorated to a near-random level.

Despite being able to poison only their component in the network, the gradient poisoning
adversary was able to avoid detection in the relative importance graph. As such, the
gradient poisoning attacks, too, were entirely successful. Even with a reliable baseline,
the adversaries were able to completely obstruct a model being learned, avoiding detection
all the while.



Chapter 7

Summary and Future Work

This work presented an easily extendable visual taxonomy of the adversarial attacks and
countermeasures in a federated learning environment. The taxonomy communicates the
impact of each item with the number of lines permeating from it. In this format, the
protection against a type of attack, the vulnerability of an FL scenario, and the versatility
of a countermeasure is all represented clearly.

Then, both a peer-to-peer horizontal and SplitNN-based vertical simulation was imple-
mented to learn from the MNIST dataset. Two different model architectures were evalu-
ated to provide a baseline, one of which was adequate to continue investigating.

The system was then attacked with two types of attacks, data-poisoning and gradient-
poisoning attacks. Both of these categories of attacks were evaluated with different pa-
rameters that controlled the efficiency of the attack. The results in the two scenarios
were compared to the other, as well as to their corresponding baselines. The attacks
were overwhelmingly successful in their respective objectives: implementing a backdoor
or deteriorating the model performance.

The simulation took place in a controlled environment. The adversaries’ capabilities were
limited in that they could only attack the system with the attacks defined in the exper-
iments. An avenue for future work could be to explore systems in which the adversaries
are equipped with multiple attacks at once and can choose to employ any at any time.

The experiments did not include any active countermeasures. The investigated attacks
were both extremely successful, but both have countermeasures that could limit their
efficiency. Future work could focus on extending the system presented in this work with
countermeasures and continuing the comparisons in the way laid out in this work.

In much the same way as relative importance was in this work, new metrics could be
defined to evaluate the performance of a system. More concretely, the gradient poisoning
adversary was not revealed by any metrics in this work, but the data poisoning adversary
was clearly revealed by their relative importance. Future work could create new metrics
that would reveal a gradient poisoning adversary, as well any adversary utilizing any other
attack.
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